
II G 1 Transactor for the AM IGA [ilIOl

"LUCAS" For the Amiga 1000

A 68020168881 platform board

by Brad Fowles

Brad Fowles is a design engineer at Anakin Research, and is
responsible for the hardware design of Anakin's Easyl drawing
tablet . He has been involved with the Amiga since the ma­
chine's debut in 1985. Brad tells us that one of his guiding de­
sign principles for computer hardware is, 'Don't let out the
magic smoke' . Be careful of this if yOlt attempt this project.

Most of you in the Amiga community are well aware of the
wonderful software available in the Public Domain. As a hard­
ware type I have often been envious of the ease with which
software can be shared among developers and users alike.
Ideas and techniques can be distributed through BBS networks
to the general benefit of all. In contrast, hardware developers
lead a comparatively solitary existence, the exchange of ideas
impeded by economic and logistical problems.

Can there be such a thing as Public Domain Hardware? Obvi­
ously no one can give away printed circuit boards, but perhaps
we can do the next best thing: give away as much infonnation
as possible and make bare PCBS available for as close to cost
as shipping allows.

The project is a platfonn board called LUCAS (Little Ugly
Cheap Accelerator System) which replaces the 68000 in your
Amiga 1000. LUCAS provides greater system perfonnance and
allows the use of the 68881 math coprocessor as well as an up­
grade path to 32-bit wide memory.

The board has a 68020 and 68881 running at 16 MHz, and in­
terface logic (consisting of four PALS, four discretes, a 16 MHz
crystal, two SIP resistor paks, and some capacitors) to trans­
pose 68020 cycles to 68000-like cycles . LUCAS also has a con­
nector which will allow you, at a future date, to add 32 bit
wide memory. (I ' ll try to get the fine people at Transactor to
publish a memory board for this system in a few months.)

You can order the bare printed circuit board for $40, and the
four-PAL chip set for $25 (see ordering information at the end
of this article) . The rest is readily available from local suppli­
ers. The schematic and PAL equations are published here. Any­
one who wants the film plots or Net lists so they can adapt the
fonn factor to the Amiga 500 is welcome to them for whatever
it costs me to get and ship them to you. (PCB design was done
using P-Cad on er .. . an AT (... almost said the I word)).

.-1

If you own an Amiga 1000 and you would like to experiment
with a 68020 and 68881 combination to improve perfonnance,
this may be the cheapest way to get there. Unfortunately, the
chip set is going to cost you about $370.00 Canadian. Our aim
is to make the rest as cheap as possible. You should be able to
be up and running for under $475.00, or about three quarters
of that if you live in the real world .

I decided to do this project for three reasons. One, I wanted
one myself and couldn't afford the commercial versions. Two,
some friends of mine who are using Sculpt 3D and Animate
from Byte by Byte (both are available in 68020-68881 ver­
sions) needed more horsepower to render their images fast
enough to actually make money at it. Three , I figured all of us
Amiga 1000 owners out there with true hacker's hearts needed
some light in our future since I meg of chip ram ain ' t.

When I started the design of this board, I used as a reference
an article from EDN, January 9th 1986, pp 216-219. While
looking at this design I became aware of an application note
from Motorola AN944/D, MC68020 and MC68881 Platform
Board for Evaluation in a 16-bit System. I recommend both
these documents, especially the latter, if you wish a better un­
derstanding of how this board works. Unfortunately it is im­
possible within a short article such as this one to give more
than a brief overview of how the board works. In the technical
section of this article, I will try to highlight those aspects that
are specific to the Amiga, but a thorough understanding will
require some digging on your part. I also recommend the Us­
er's Manuals for the MC68020 and the MC68881 which are
available from Motorola as "MC68020UM/AD" and
"MC68881 UM/AD" respectively.

Okay, Here is the disclaimer: If you get one of these bare
boards and carefully put it together and then install it into your
Amiga, you should have no problem and you'll be up and run­
ning in an evening or two. If you have problems, then it's up
to your ingenuity to solve them. If you don't have some expe­
rience with a soldering iron, please, don't let this be your de­
but. I will gladly help anyone with problems. There are three
ways you can get in touch with me: USENET at
anakin@gpu.utcs .toronto.edu (Brad Fowles), BIX in the
ANAKfN, AMIGA conference or by regular mail through
Transactor. If you do manage to get my phone number you'd

Hfb

1181 Transactor for the AM IGA

better be able to sweet talk me within 30 seconds. I hope that
if there is sufficient interest out there that local user groups or
individuals will add their help to anyone having problems. I
have no objections should anyone get the bare boards and put
them together and install them for a modest price, but please
remember that the purpose of this is to make these available to
end users as cheaply as possible.

If I haven't scared you off, please read on. If I have, well... so
long, and thanks for all the fish .

Once you get one of the bare boards and procure all the parts,
follow the enclosed instructions and carefully solder sockets
for all the ICs and the crystal onto the board. Solder the resistor
paks and the capacitors into place. Insert the 64 Pin header for
the 68000 socket and solder it in.

Installation is quite simple but should be carefully done. Re­
move the plastic cover and the EM! shield from the Amiga base
unit. On the right hand side of the PCB, just beside the Expan­
sion connector, is the 68000 CPU . Gently pry the 68000 out of
its socket, and store it on a piece of styrofoam somewhere
safe. Now insert the LUCAS board into the 68000 socket, being
careful to ensure that all 64 pins are correctly inserted into the
socket. If you want to be really careful, remove the disk drive
so you can see better. Watch the ribbon cable for the internal
disk drive, as the bends in the cable can make things awkward.
As long as you're careful and don't force anything, you should
have no problem. You can do initial tests with the cover off,
but once you ' re satisfied it's working put the base unit with its
EM! shield back together again . That's all there is to it. Your
heart can now resume normal operation.

You don't need to know a great deal about the inner workings
of the LUCAS board to enjoy using it, but for those who would
like a better understanding of the nature of running a 32-bit
68020 in a 16-bit 68000, read the section at the end of the arti­
cle to get the key technical points.

Benchmarks

To give some idea of the performance improvement you can
expect with the 68020-68881 pair, I have used four programs
Al Aburto made available on the DEVCON disks distributed at
the Washington Developers' Conference. These benchmarks
were run on an Amiga 1000 with a 2 Meg Microbotics Star­
board memory board and a Com spec 20 Meg Hard Disk. The
operating system was Kickstart 1.21 and Workbench 1.3 Gam­
ma 7. It should be noted that when the 68020-68881 pair is in­
stalled, the new IEEE math libraries which support the 68881
are used for floating-point transparently. I ran these bench­
marks first with a standard 68000 and then with the LUCAS

board.

Savage:
68000470.0 sec. Error -6.ge-7
LUCAS 14.5 sec. Error -5.7e-4

+-1 ~71

Whetstone:

Calcpi:

Float:

68000 24 kwhets/sec.
LUCAS 126 kwhets/sec .

68000 4.85 kflops/sec. Error -1 .3ge-11
LUCAS 11.9 kflops/sec. Error -2.78e-11

68000 lOOOO iterations 45.74 sec .
256000 iterations 286.96 sec.

LUCAS 10000 iterations 12.80 sec.
256000 iterations 118.56 sec.

Of course, speed could be further enhanced by using inline F
instructions for the floating point stuff, and even further en­
hanced by using 32-bit wide no-wait-state static memory.

Please remember that benchmarks are like political speeches;
they only seem to make sense.

Software Considerations

Most software runs just fine on the 68020 but there are some
programs which will guru on you. One of the major reasons
for this is that on the 68020 all the instructions that are on the
68000 are implemented with the inevitable exception of one:
the MOVE SR <ea> instruction. On the 68000 this is a user
mode instruction; on the 68020 (and 68010 and later parts) it
is a supervisor mode only instruction, i.e., if it's executed on a
68020 in an Amiga, you get a privilege violation guru.

If you're writing software, don't use this instruction; use in­
stead the GetCCO library function which translates to a MOVE

CC <ea> on the 68020, which is a valid user mode instruction.
This function translates to a MOVE SR <ea> if there is a 68000
in the Amiga. This way you're safe both ways. (To run exi st­
ing software that fails on the 020 for the above reason, you can
solve the problem by first running a program called DeciGel
that traps the offending instruction and does the right thing .
DeciGel can be found on the TransAmi disk for this issue, or
on Fish disk # 18.

If you ' re one of those people who thought encoding informa­
tion in the upper eight bits of the address field was a nifty idea
.. . Oh well, time to learn the error of your ways.

Of course, if you use any instructions from the 68020 superset
then this code will never run on a standard Amiga. For further
information, see section 21 of the Washington Amiga Devel­
oper Conference Notes, Software Issues in 32-bit Amiga Sys­
tems by Dave Haynie.

The new release of 1.3 has new lEEE Double Precision Math
Libraries which take advantage of the 68020-68881 pair if it is
present, and can immediately speed up any existing programs
which use the math libraries.

0 1 Transactor lor the AMIGA

If you want blindingly fast floating point, the best way is to re­
compile your code so that it uses direct inline F instructions.
On the disk that comes with the PC board, you'1I find pro­
grams called Mandslow and Mandfast. They are slight adapta­
tions of RJ's original Mandelbrot program, adapted by Eric
Haberfe1lner. Both programs are the same except that Mand­
slow was compiled for a standard Amiga, while Mandfast was
compiled to use inline F instructions . Using Mandfast, a mod­
erately deep Mandelbrot that runs in I hour 20 minutes on a
standard Amiga runs in 4 minutes 20 seconds with the LUCAS
board installed.

Compatibility

The LUCAS board works with all the expansion boards I have,
but I'm sure there will be some out there that will bomb out. I
will keep a list of those that do and those that don't and post it
regularly on Usenet and BIX. The ones I have are the Comspec
20 Meg hard disk, Comspec 2 Meg Memory board, EASYL,
and the Microbotics Starboard 2 Meg Memory board.

As a matter of interest only, the board works fairly well at 20
MHz, but periodically bombs. I have only 16 MHz parts; when
I debug the bomb it seems to be the fault of the on-chip in­
struction cache. If you have 20 MHz parts, try it and let me
know. Even if you have 16 MHz parts, it's worth the price of a
20 MHz crystal to see if it will work. Who knows? You might
get lucky.

Conclusion

The performance of the Amiga 1000 with the LUCAS board in­
stalled will be improved, but it won't perform miracles. For
general purpose computing, I find that compiles are only about
1.4 times faster, hardly worth the trouble. However, any pro­
gram which uses floating point will be improved considerably,
and those which have embedded F instructions will indeed ap­
pear miraculous.

On the other hand, the board does allow for 32-bit wide expan­
sion memory, and if installed you can expect considerable gen­
eral purpose performance improvements as well. I plan to de­
sign two boards: one with standard 100 or 120 ns DRAMS and a
second with some high speed static RAM for no-wait-state
operation at 16 MHz. You get most of the performance in­
crease by having the memory 32 bits wide, but I can't resist
seeing how fast it will go with no wait states at 16 MHz.

Stay tuned to TransAmi and the Nets for updates. Enjoy!

* * * * *
Brad is making the bare board and the PAL chips for this pro­
ject available at a nominal cost: $40 for the board (which
comes with a disk), and $25 for the four PALs. You can order
directly from Brad at the following address:

'-1

RR #5 Caledon East
Ontario, Canada
LON lEO

Technical Discussion
Once the LUCAS board has been installed, we essentially have
divided the CPU time into two discrete blocks: One, seem­
ingly operating at 7.16 MHz and synchronous to the special
purpose chips responsible for the video, sound, etc . and two, a
16 megahertz asynchronous system between the 68020 and
68881 and any possible 32-bit wide memory connected to the
LUCAS bus.

The essential design criteria I used for the board were that it
should be able to run asynchronously to the Amiga clock (so
speeds of 16 MHz or greater could be achieved) and that there
be no connection other than through the 68000 socket (to sim­
plify installation.)

In order to achieve this, the board must look like a 68000 (4
clock standard bus cycle) running at 7.16 MHz when it is run­
ning its bus cycles, but when it is doing internal processing or
talking to the MC6888I or future 32 bit wide expansion ram,
it should run at the full 16 MHz (3 clock bus cycle).

90% of the problem in making this board work comes down to
the problem of making the 68020 appear exactly like the origi­
nal 68000 it replaces as it has been used architecturally in the
Amiga, but able to go like stink when it gets the chance.

The address and data lines are easily implemented, as they are
connected directly from the 68020 to the 68000 socket. Note
that the 16 data bits are connected to data bits 016 through
031. The upper eight address bits on the 68020 are simply left
unconnected.

I have used the * convention to indicate low true signals for
ease in typesetting the article, i.e., * AS means AS is a low true
signal. The PAL equations are written in CUPL format so I ap­
pologize to all you PALASM users .

68020 to 68000 Interface

The 68000 has an asynchonous bus structure. It asserts Ad­
dress Strobe (* AS) to begin a bus cycle then waits for the as­
sertion of *DTACK to end the cycle. This is usually 4 or 6 cy­
cles, but may be held off by some peripheral device . The
68020 works much the same way except there are two
*DTAcK-like signals, *DSACKO and *DSACK l. Because the
68020 can address in bytes (8 bits), words (16 bits) and long­
words (32 bits) it must be able to differentiate between them.
It does this by use of its dynamic bus sizing capability. A pe­
ripheral responds to a bus cycle by asserting one or both of the
*DSACKx signals which tells the 020 the size of the transfer.

DSACKO

o
I
o

DSACK1

o
o

TRANSFER SIZE

32 bit transfer
16 bit transfer
8 bit transfer
Insert Wait States

II G I Transactor forthe AMIGA

Bus cycles on for the Amiga are always 16 bits wide so we
will assert only *OSACKI when responding to Amiga cycles.
When we are running cycles for the 68881 (FPU) or 32-bit
wide RAM on the LUCAS board expansion connector we must
assert the appropriate *OSACKx combination.

In general terms with no wait states the 68000 will run a bus
cycle in 4 clock cycles; the 020, however, will run the same
bus cycle in 3 clock cycles. To correct this we must delay * AS
and *os (Data Strobe) from reaching the Amiga until after the
rising edge of the S2 phase of the 7.16 MHz CPU clock. This is
accomplished by the flip-flops U8a and U8b: inverting *AS
from the 020 and using the complementary output with the
flip-flop 's reset tied to the inverted *AS will delay *AS the de­
sired amount and terminate * AS200LY when the * AS from the
020 terminates. This same technique is used for *OS. This cre­
ates the two timing signals *AS200LY and *OS200LY.

Byte addressability on the 68000 is accomplished by the Up­
per Data Strobe (*uos) and the Lower Data Strobe (*LOS).
The 020 has only a single Data Strobe (*os) . It uses a combi­
nation of the two SIZE pins and AO and A I to define the trans­
fer pattern from the 020's internal multiplexer to the external
data bus. (Note: bytes appear on data bits 24-31, words appear
on data bits 16-31). It is therefore necessary for us to create
*UOS and *LOS. This is accomplished by the following PAL
equations. Note: The data strobes are not asserted during a Co­
processor cycle. (cpcs)

!UDS = (!DS20DLY) & (!AO) & (CPCS)
!LDS = (!DS20DLY) & (SIZI) & (CPCS)
(!DS20DLY) & (!SIZO) & (CPCS)
(!DS20DLY) & (AO) & (CPCS)

The 68000 contains logic to support the 6800 family of prod­
ucts, and the Amiga uses this to interface to the 8250s. We
must also emulate this interface as it is not present on the 020.
A secondary clock called the E clock must be generated . It has
a frequency of 1/10th the CPU clock and has a duty cycle of
60% low and 40% high. This is done by a decade counter in
PAL U4. When running a 6800 family cycle the Amiga or pe­
ripheral generates a Valid Peripheral Address signal (*VPA).
The 68000 then syncs itself with the E clock and issues a Valid
Memory Address (*VMA) and ends the cycle on the falling
edge of the E clock. The equation,

!Z3 = !QD #
QC#
QB#
QA;

on PAL U4 in combination with the equation

!ZI.D = (DS20DLY) & (!ZI) #
(DS20DLY) & (Z3) & (!VMA);

asserts *OSACK I in the 9th state of E clock by the generation
of the Z I signal so that the long VPA, VMA cycle can be termi­
nated correctly .

.-1

68020 to 68881 Interface

The MC68881 chip select (*CS) must be decoded from the
020. The 020 generates a Ilion the Function Code pins (cpu
Space), a 00\0 on the address lines A 16-A 19 which means this
is a FPU coprocessor cycle, and a coprocessor ID on Address
lines A 13-A 15. Since there is only one coprocessor in this de­
sign, A 13-A IS are undecoded. The rest is decoded by PAL U4
in the following equation:

CPCS = (FC2) & (FCl) & (FCO) & (!AI9) & (!A 18)
& (AI7) & (!AI6)

This generates the *cs (Chip Select) to the 68881.

Zen and the Art of Cycle Termination
(An Asynchronous Synchronous Asynchronicity)

The generation of the *OSACKI signal from the Amiga *OTACK
caused me at times to doubt not only my own sanity but that of
the universe itself. The *OTACK signal from the Amiga should
appear and be sampled during the S4 phase of the clock cycle.
Unfortunately it doesn't quite know that. It responds more or
less correctly when it is talking to internal RAM but when ex­
ternal (fast) RAM is accessed, *OTACK comes back almost right
away. Remember that *OTACK is the only way we have of de­
termining the length of a cycle. We will cope with this anoma­
ly in a moment.

Since the 020 is operating at 16 MHz - i.e., quite asynchronous
to the Amiga clock - you have to sync up somewhere along the
line with the Amiga 7.16 MHz clock. The ideal place to do this
is when the two Amiga clocks CI and C3 are in the condition
C I high and C3 low. These signals are not available at the pro­
cessor and for a long time I had these two lines coming up off
the motherboard. However the 7.16 MHz clock that is
available at the processor can produce a reasonable facsimile. I
divide the 7.16 MHz clock by two using U9a then logically OR
it with the original 7.16 MHz clock and this turns out to have
the same timing as Cl high and C3 low (my faith in the uni­
verse began to rekindle at this point.)

In the PAL equations this is OTPRELIM (OTack PRELIMinary).
Now we have a reference point to sync back up with the
Amiga.

In a saner world the combination of *OTACK and the Z I signal
(for termination of VPA, VMA cycles) would be sufficient to
create the term SYSOSPREI (system osackl PREliminary I),
but we have to delay till *OTPRELIM is true to sync up with the
Amiga, plus cope with the quick response of *OTACK anomaly
when talking to fast RAM And sync back up with the 16 MHz
68020 when we do finally issue a *DSACKI.

Confused? Wait! It gets better

Most dynamic memory boards, when connected to the Amiga
expansion bus, will assert XRDY to hold off the assertion of

1 L • J 1 Transactor for the AM IGA

*OTACK while they do a refresh cycle. This puts in enough
wait states so that the memory board can complete a refresh
cycle. The problem is , soon as XRDY is asserted, a 20-30 ns
glitch occurs in *OTACK, prompting the 020 to terminate the
cycle before the data is even thinking about arriving on the
bus. The solution is to avoid decoding it till the S4 phase of
the Amiga 7.16 MHz clock. I delay *AS200LY again for
*OTQUAL and again for *OTQUALI. DTQUAL becomes part of
the *DTACK term and *DTQUALI is wired to QUAL (I needed
the 7 ns across the PAL) then QUAL is added to the *DTACK

term, giving:

!SYSDSPREI = !ZI#

(!OTACK)&(!AS20DLY)&(!DTQUAL)&(!QUAL)

I() COH'ClS 68128 R31 OJ _ E2

R3II.. oDeS EI3
R29 C5 -1PaC) F 13
R28" <ECS GI
ffZl as .[H)rrI G:J
JI2OR;
A75C1o
A2486

I() COH'ClS 68881 _ ..
NIC EI

9i.

68128 \otC AI:
... DI.Ill.E3.GII.GI3 1fi
03.N13

68B28 ()r() AT :
Ale. 89, G12. Hll, 13,1(1. L7 ,P(f

81.C3.Fl2.0.LII
68881 \otC A'T:
1fI.E2.E9.ttI
AI,BI ,n.
68881 ()C) AT:
B7.CI.C3.E1I.J8
A2.tfI.AII.81.B3.Ill.F2.0

This solves the quick *OTACK problem. We buffer this (anoth­
er 7 ns) by:

!BUFOUT = !SYSDSPREI

Add in the Amiga syncronizing term

!DTTRIG = (!BUFOUT) & (lDTPRELIM)

Now we have an edge which is syncronous to the 7.16 MHz
Amiga system. We then use this to trigger a Flip-Flop which
has patiently been waiting for all this tomfoolery to end, and
will ship !SYSOACKI to yet another Flip-Flop to sync it back up
to the 16 MHz 020 clock, and then to the awaiting PAL U7 for

9i. ~.

..,k . ~ ..,k

FI SIll
Sill lI7.'

III IW lI7.5
C<

oAS2II lI7.3 LI
.DS28 UII.3 15. 18

"I <8G2Il UII.13
B2

• II(JOC 15 ••
AI FC2 UI.l2 15.8
F2 ",. 2 J_

FCO TO ~SCDfl
EI 28

t
UI.13 ---rr-rr-lnr"r-rr-rr-rr-rr----rr-rr-rr-rr-rr-rr--<l-- UI.'9 lI7.12 .. _______ .DSm"-'-"-I to

UI.16 _ I I hI I I I I I I I I I II _ In.53 lI7.I' ... ·!lSfUC1 11
FCI

" 71

'"
R23

~
If]

_IW
51 1\21

r:T
Q 51

B7 ". A8
AI Al8

0
B8 Al7 ..
CO

"16
'5

C9
"15

..
811

"I'
a

"" AI3 '2
811

"12 " ClO
"II •

"12
"10

39
m .. 3B
CII
~

37
"13 R7 36
CI7

'"
:IS

813 ,.
CI3

R;
33

B3
. ..

13
_T

K2 .- 17
J2 ·IL" 22
112 IILPI 75
1I3 24
HI7 23

L2 "'- lnl.12

CI "",' 18 ..
Dl7

OJ
)7

013 1\2 31
EI2

"I
31

1\2 29
C2

TO ~ SOCXET

501 D31 NI
$ 031 L3 6 56 Ill9

'" Ill8 Sf
IIl1 N2

51
Ill6 " 8 59
IllS

M3 ..
112<

M3
61

Ill3
NO

67
D22

L5

0 63
Illi

NO ..
Ill8 M5

I
01"

M5
2

018
L6

2 3 NO

• 017
NO

5 01. H7
Dl5
DI' LB

0 013
...

012 '"
011

Nil

010
L.

00
Nil

DB
Nil

D7
NI2

'"'
L11

os "II

1M "12

OJ "13

III
Ll2

~
L13
m DO
'13

DO
OJ

~ .. III
\16

OJ
AS

1M

'" os 86

'"' If] 6 111
DB AI ..
00 co DII
DII

..
8 DI2

811

DI3
00

D14
C9

DIS CII

8 DI. 011

DI7
FlO

DI8
F.

01. Oil
HII 8 Ill8
Il9 Illi

D22 111

Ill3
'II

D24
J9

1 D75 ""
Ill6

17

IIl1
..

Ill8
<:1

Ill9 J.
031

..
D31

>:S
J5

~ 9i.

Uk •• Uk

FI
Sill

9i. ~.

to
IW •• "'k Uk

J'
..a>IliRl(I

«PI)SIU(I lI7.18

'" lI7.15
.DS2iI

GI
oAS2II

LQ,Ml

HI .a>cs IQ.LI

J3 ",.18

+-1 @Q]

G Transactor for Ihe AMIGA

additional decoding. I feed the Flip-Flop U9b with *ASDLY so
that the !SYSDSACK I signal will tenninate when * AS does .

We're almost done.

PAL U7 then combines *SYSDSACK I with the 68881 *DSACK I,

CPDSACK I, and *SRDSACK I (which comes from the expansion
connector for future Static RAM), and finally and enthusiasti­
cally begets *DSACK I.

What could be simpler?

*DSACKO is generated from the 68881 and from the future stat­
ic RAM only.

U2.EI FC0
U2.F3 FCI

U2.F2 FC2

U2. C9 AI6
U2.C8 AI7
U2.B8 AI8
U2.~ AI9

lunpers

4
3

2

8

7
6

5

PA..

16R4-B2

lJ.<l

19 Eclk

9 .\IPA

12 .Z3
17 fl'1 4
16 OB 5

15 ex: 6
14 00 7

Bus Arbitration

The Bus arbitration technique is quite similar to the 68000
with one exception. During coprocessor cycles the *AS is
blocked from the 68000 bus. This gives rise to a possible prob­
lem. If the 68020 begins a coprocessor cycle with *AS blocked
and responds to an alternate bus master's *BR (Bus Request)
with a *BG (Bus Grant), the 68020 will assume the alternate
bus master will wait for the negation of * AS. Unfortunately,
* AS is blocked and therefore already negated. The result is bus
contention. Therefore we must prevent the assertion of *BG

until the interface negates *AS. This is done with the equation,

!BGOO = (!BG20) & (IZ2) & (AS20)

Ec I k U1.20

>VPA UI.21

rl--
PA.. 12 -

U2.1Q -AVEC

Ul.26 FC20
U!.F2 FC2 :-~

Ip.
16R4-B2 18

-AS00 U7.!7

U10,2 .7)0\

U2.Ll sAS20

U2.HI -IJS20

U!.15 7M

UI.10.0TOCK

--.J

l :" 4

UI0

l '" 13 12

UIO

~

~
UI0

.cpcs U3.l3

chI! U2.AI .BGn< 8

U2.82 'BG20 9
CJ-.JO

r

U2.Ll .AS20 18

r--1-
U8 7)0\ I

I
2 5

~ 6 NlC >AS20Il. Y

5V+ U8

~
2

I 0 0 9 N/C r--
~ 8 -IJS20Il. Y 6

10 UI0 U!.15 7)0\
5

5V+ 3
I 2 -7M U4.1

'--

8

7M 7

~
1

,---

2 5 o 0 N/C
7MB2 ~ 3 a t

5V~ I
5V+

UI2 220

5V+

JI4 I 8

~ I
330

16 r-£G.

~ ri-l
Ulla

5V+

l1.5 19 -BG00 U!.II

13
HIG-tZ

17
.IM'! UI.19

UI0

ch ll
6 5

CJ-.JO

~ un
UI0

13 9 5V+
12 C

~.u"~.~ r- 0 0 0
PA.. 10 I! a 8

16R4-B2 5V+
18 -OTTRIG 5V:

0
~

.OTOJU

~
16M_

-SYSDSFCKI

> I -CU\.
9

·AS00 SYSTEH ----!.l 17 -+11
frI) 3 CJ-.JO U2.C4

4 30 OMS
U2. F1 SIZ0 19

U2. G2 SIZI
5 PA..

30 oms
U4.18 -cpcs 7 16L8-B2 18 -liM -AS20Il. V 6

U7

.UOS UI.7

'LOS U!.8

U3. K4 -CPDSR)(I 15 12 --DSOCK0 U2.H3
U3.l4 -CPDSR)(0 8

16M 9 14 -Conn. -SRDSR)(0
16 30 otms

Conn. -SRDSFCK I 13 -
U9.8 -IJS20Il. Y 2 I

r1-HIGHZ US. I

2 ~15 30 oms U2L2 R/
'"''''''' . L... _____________________ ~~R/.W0'ilUI.9

• ;~<~.:~--------------3-0 ~' 6

4

5V+

rf0T Transactor for the AMIGA

Listing: Equations for the four PAL chips in CUPL format

PARTNO 04 ;
IW!E Finalu4 ;
REV 03 ;
DATI! May 23rd, 1988 ;
DESIGNER Brad Fowles ;
COMPANY AlWin ;
ASSEMBLY Lucas;
LOCATION 04 ;

/* PAL16R4B2 * /
/* PAL DESIGN SPECIFICATION * /
/* 68020-68881/68000 AMIGA INTERFACE * /

PIN 1 = 7l1li ;
PIN 2 = Fe21 ;
PIN 3 = FCl ;
PIN 4 = FCO ;
PIN 5 = Al9 ;
PIN 6 = Al8 ;
PIN 7 = Al7 ;
PIN 8 = A16 ;
PIN 9 = VPA ;
PIN 12 = Z3 ;
PIN 13 = FC20 ;
PIN 14 = QD ;
PIN 15 = QC ;
PIN 16 = QB ;
PIN 17 = 01 ;
PIN 18 = CPCS ;
PIN 19 = E ;

'E = (!QD)& (IQC)1
(!QD)& (IQB) ;

'CPCS = (FC21)' (FCl)& (FCO)& (IAl9)& (!Al8)& (Al7)& (!Al6);

!FC20 = !FC21 ;

'Z3 = !QD I
QCI
QB I
01;

'01.0 = QA ;

!QB .D = (!QB) , (101)1
(QB)&(QA)I
(QD);

IQC.D = (IQC) & {!QA)I
(IQC) , (IQB)1
(QC) , (QB) , (01);

!QD .D = (!QC) , (!QD)1
(IQB) , (QA) I
(!QD) , ('QA) ;

/*
DESCRIPTION: DECADE CQONTER,6800 CLOCK, AND COPROCESSOR SELECT LOGIC.
* /PARTNO 05 ;
IW!E Fina1u5 ;
REV 04 ;
DATI! May 23rd, 1988 ;
DESIGNER Brad Fowles ;
COO'ANY Anakin ;
ASSEMBLY Lucas ;
LOCATION 05 ;

/* PAL16R4B2 * /
/* PAL DESIGN SPECIFICATION * /
/* 68020-68881 /68000 AMIGA INTERFACE */

f-I

PIN 1 = 7M ;
PIN 2 = VPA ;
PIN 3 = AS20DLY ;
PIN 4 = QA ;
PIN 5 = QB ;
PIN 6 = QC ;
PIN 7 = QD ;
PIN 8 = BGACK ;
PIN 9 = BG20 ;
PIN 12 = ASOO ;
PIN 13 = BIGBZ ;
PIN 14 = Z2;
PIN 15 = BGACK2 ;
PIN 16 = BGACKl ;
PIN 17 = VMA ;
PIN 18 = 1520 ;
PIN 19 = BGOO ;

BIGBZ = (BGACK2) & (!AS20DLY) I
(BGACK2) & (BG20);

'BGOO = (!BG20)& (!Z2)& (AS20);

!BGACXl. D = ! BGACK ;

'BGAOO .D = 'BGACXl ;

!Z2 .D = (IASOO)1
(AS20);

IVMA .D = (IQD) & (IQC) & (QB) & (01) , (IVPA)1
(!VMA) & (QD II
(IVMA) & (QC) ;

/*
DESCRIPTION: BOS ARBITRATION LOGIC AND VMA GENERATION
* /PARTNO 06 ;
IW!E Finalu6 ;
REV 03 ;
DATI! May 23rd, 1988 ;
DESIGNER Brad Fowles ;
COO'ANY Anakin ;
ASSEMBLY Lucas ;
LOCATION 06 ;

/* PALl6R4B2 */
/* PAL DESIGN SPECIFICATION * /
/* 68020-68881 /68000 AMIGA INTERFACE */

PIN 1 = 16M ;
PIN 2 = AS20DLY ;
PIN 3 = Z3 ;
PIN 4 = VMA ;
PIN 5 = 7M ;
PIN 6 = DS20DLY ;
PIN 7 = 7MB2 ;
PIN 8 = DTACK ;
PIN 9 = QUAL ;
PIN 12 = DTPRELIM ;
PIN 13 = BOFOOT ;
PIN 14 = DTQOAL ;
PIN 15 = DTQOAL1 ;
PIN 16 = Zl ;
PIN 18 = DTTRIG ;
PIN 19 = SYSDSPRE1 ;

!DTPRELIM = (!7M) , (!7MB2) ;

! DTTRIG = (I BOFOOT) , (! DTPRELIM)

8 Transactor lor Ihe AMIGA

I SYSDSPRE1 = I Zl J
(I DTACK) & (I AS20DLY) & (IDTQUAL) & (IQUAL) ;

IZ1.D = (IDS20DLY) & (IZ1) ,
(IDS20DLY) & (Z3) & (IVMA);

IDTQUAL.D = IAS20DLY ;

!DTQUAL1.D = IDTQUAL ;

I BUFOUT = I SYSDSPRE1 ;

/*
DESCRIPTION: SYSTEM DSACK1 GENERATION
* /PARTNO U7 ;
NAME Fina1u7 ;
REV 05 ;
DATE May 23rd, 1988 ;
DESIGNER Brad Fowles ;
COMPANY Anakin
ASSEMBLY Lucas ;
LOCATION U7 ;

/* PAL1618B2 * /
/* PAL DESIGN SPECIFICATION * /
/* 68020-68881 /68000 AMIGA INTERFACE */

PIN 1 = 8IGHZ ;
PIN 2 = DS20DLY ;
PIN 3 = AO ;
PIN 4 = SIZO ;
PIN 5 = SIZ1 ;
PIN 6 = AS20DLY ;
PIN 7 = CPCS ;
PIN 8 = CPDSACKO ;
PIN 9 = SRDSACKO ;
PIN 11 = SYSDSACK1 ;
PIN 12 = DSACKO ;
PIN 13 = SRDSACK1 ;
PIN 14 = DSACK1 ;
PIN 15 = CPDSACK1 ;
PIN 16 = ASOOBUF ;
PIN 17 = ASOO ;
PIN 18 = LDS ;
PIN 19 = UDS ;

ASOO.OE = 8IG8Z ;
IASOO = (CPCS) & (lAS20DLY);

ASOOBUF.OE = HIG8Z ;
IASOOBUF = (CPCS) & (IAS20DLY) ;

UDS .OE = 8IG8Z ;
IUDS = (IDS20DLY) & (lAO) & (CPCS) ;

LDS . OE = 8IG8Z ;
!LDS = (IDS20DLY) & (SIZl) & (CPCS) J

(IDS20DLY) & (ISIZO) & (CPCS) J
(IDS20DLY) & (AO) & (CPCS) ;

IDSACK1 = (! SRDSACK1)' (IAS20DLY) #
(ICPDSACK1)& (lAS20DLY)#
(I SYSDSACK1) & (I AS20DLY) ;

IDSACKO = (ISRDSACKO)& (IAS20DLY)J
(!CPDSACKO)& (IAS20DLY) ;

/*
DESCRIPTION: ADDRESS STROBE, UPPER AND LOWER DATA STROBE AND

FINAL DSACKX GENERATION

*/

2JNGI- Mouse Dr~en CLI- $79.95
2JNGlK8js -Macro program! - $49.95
The Dell onstrat. - Create Tutorsls $39.95

NEW:
2JNGISpell- Check. & Correct your Spelling
as you Type; Batch Check.ing too; ARexx
interface; Word expansion; - $79.95
C.dlessMouseforthe AMIGA- $179.95
Tou:hscreen for the PMIGA - CALL.

Find out about our Trade-tIP policy which
will save you up to 5()4J,. Write or call today
and receive more info on all our products.

~ MERIDIANTM
• SOFTWARE
__ INC._

(303) 979-4140
Credit Cards and Dealer

9361 W. Brittany Avenue Inquiries Welcome!
Littleton, CO 80123

AMIGA is a registered trademark of Commodore-AMIGA, Inc.
ZING! is a registered trademark of Meridian Soflware , Inc.

8 megabytes for the Amiga!
ASDG designs and builds in quality from the start. Our
8 meg board comes with 0, 2, 4, 6, or 8 meg installed. Of
course it's no·wait-state memory, of course it 's fully
auto-configuring, and comes in your choice of the Amiga ®

1000 or Amiga® 2000 form factor. You wouldn't expect less
from ASDG.

We back up our quality with a full 18 month warranty.
With memory boards from '12 meg to 8 meg ASDG gives
you more choices for memory expansion. fur more
information contact ASDG at
(608) 273-6585
925 Stewart Street
Madison, Wisconsin 53713

1-.

